Wednesday, February 5, 2025
HomeHydropowerTemporally compounding energy droughts in European electricity systems with hydropower -Greenearth

Temporally compounding energy droughts in European electricity systems with hydropower -Greenearth

  • Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5, 794–802 (2020).

    Article 

    Google Scholar
     

  • Staffell, I. & Pfenninger, S. The increasing impact of weather on electricity supply and demand. Energy 145, 65–78 (2018).

    Article 

    Google Scholar
     

  • van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).

    Article 

    Google Scholar
     

  • Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article 

    Google Scholar
     

  • Climate Bulletins (Copernicus Climate Change Service, 2021); https://climate.copernicus.eu/climate-bulletins

  • Morison, R. & Shiryaevskaya, A. U.K. power surges to record 400 pounds as wind fails to blow. Bloomberg (13 September 2021).

  • Fernández, L. Hydroelectricity generation Spain 2010–2022. Statista (2023).

  • Ingram, E. Hydroelectric generation in Italy decreased 37.7% in 2022. Hydro Review (26 January 2023).

  • European State of the Climate 2022: Unprecedented Extreme Heat and Widespread Drought Mark European Climate in 2022 (Copernicus Climate Change Service, 2023); https://climate.copernicus.eu/copernicus-european-state-climate-2022-unprecedented-extreme-heat-and-widespread-drought-mark

  • Gualtieri, T. Drought forces one of Spain’s largest hydro plants to halt. Bloomberg (7 November 2022).

  • Hydropower Data Explorer (IEA, 2021); https://www.iea.org/data-and-statistics/data-tools/hydropower-data-explorer

  • Van Vliet, M. T. H., Sheffield, J., Wiberg, D. & Wood, E. F. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environ. Res. Lett. 11, 124021 (2016).

    Article 

    Google Scholar
     

  • Brás, T. A., Simoes, S. G., Amorim, F. & Fortes, P. How much extreme weather events have affected European power generation in the past three decades? Renew. Sustain. Energy Rev. 183, 113494 (2023).

    Article 

    Google Scholar
     

  • Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L. & Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5, 150–159 (2020).

    Article 

    Google Scholar
     

  • van der Wiel, K. et al. Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall. Renew. Sustain. Energy Rev. 111, 261–275 (2019).

    Article 

    Google Scholar
     

  • Otero, N., Martius, O., Allen, S., Bloomfield, H. & Schaefli, B. Characterizing renewable energy compound events across Europe using a logistic regression-based approach. Meteorol. Appl. 29, e2089 (2022).

    Article 

    Google Scholar
     

  • Jurasz, J., Mikulik, J., Dabek, P. B., Guezgouz, M. & Kaźmierczak, B. Complementarity and ‘resource droughts’ of solar and wind energy in poland: an ERA5-based analysis. Energies 14, 1118 (2021).

    Article 

    Google Scholar
     

  • Kay, G. et al. Variability in North Sea wind energy and the potential for prolonged winter wind drought. Atmos. Sci. Lett. 24, e1158 (2023).

    Article 

    Google Scholar
     

  • Otero, N., Martius, O., Allen, S., Bloomfield, H. & Schaefli, B. A copula-based assessment of renewable energy droughts across Europe. Renew. Energy 201, 667–677 (2022).

    Article 

    Google Scholar
     

  • Jahns, C., Osinski, P. & Weber, C. A statistical approach to modeling the variability between years in renewable infeed on energy system level. Energy 263, 125610 (2023).

    Article 

    Google Scholar
     

  • Raynaud, D., Hingray, B., François, B. & Creutin, J. D. Energy droughts from variable renewable energy sources in European climates. Renew. Energy 125, 578–589 (2018).

    Article 

    Google Scholar
     

  • Bloomfield, H. C. et al. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew. Energy 164, 1062–1075 (2020).

    Article 

    Google Scholar
     

  • Craig, M. T. et al. Overcoming the disconnect between energy system and climate modeling. Joule 6, 1405–1417 (2022).

    Article 

    Google Scholar
     

  • Grochowicz, A., van Greevenbroek, K., Benth, F. E. & Zeyringer, M. Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Econ. 118, 106496 (2023).

    Article 

    Google Scholar
     

  • Perera, A. T. D. et al. Challenges resulting from urban density and climate change for the EU energy transition. Nat. Energy 8, 397–412 (2023).

    Article 

    Google Scholar
     

  • Tsanis, I. & Tapoglou, E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change. Theor. Appl. Climatol. 135, 323–330 (2019).

    Article 

    Google Scholar
     

  • Ely, C. R., Brayshaw, D. J., Methven, J., Cox, J. & Pearce, O. Implications of the North Atlantic Oscillation for a UK–Norway renewable power system. Energy Policy 62, 1420–1427 (2013).

    Article 

    Google Scholar
     

  • Rakovec, O. et al. The 2018–2020 multi-year drought sets a new benchmark in Europe. Earthʼs Future 10, e2021EF002394 (2022).


    Google Scholar
     

  • van der Wiel, K., Batelaan, T. J. & Wanders, N. Large increases of multi-year droughts in north-western Europe in a warmer climate. Clim. Dyn. 60, 1781–1800 (2023).

    Article 

    Google Scholar
     

  • van der Most, L. et al. Extreme events in the European renewable power system: validation of a modeling framework to estimate renewable electricity production and demand from meteorological data. Renew. Sustain. Energy Rev. 170, 112987 (2022).

    Article 

    Google Scholar
     

  • Muntjewerf, L., Bintanja, R., Reerink, T. & van der Wiel, K. The KNMI large ensemble time slice (KNMI-LENTIS). Geosci. Model Dev. 16, 4581–4597 (2023).

    Article 

    Google Scholar
     

  • Ohlendorf, N. & Schill, W. P. Frequency and duration of low-wind-power events in Germany. Environ. Res. Lett. 15, 084045 (2020).

    Article 

    Google Scholar
     

  • Bloomfield, H. C., Suitters, C. C. & Drew, D. R. Meteorological drivers of European power system stress. J. Renewable Energy 2020, 5481010 (2020).

    Article 

    Google Scholar
     

  • Kautz, L. A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dyn. 3, 305–336 (2022).

    Article 

    Google Scholar
     

  • Montanari, A. et al. Why the 2022 Po River drought is the worst in the past two centuries. Sci. Adv. 9, eadg8304 (2023).

    Article 

    Google Scholar
     

  • Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).

    Article 

    Google Scholar
     

  • Fischer, E. M., Seneviratne, S. I., Lüthi, D. & Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34, L06707 (2007).

    Article 

    Google Scholar
     

  • van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Article 

    Google Scholar
     

  • van Vliet, M. T. H. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40, 156–170 (2016).

    Article 

    Google Scholar
     

  • Stürmer, J. et al. Increasing the resilience of the Texas power grid against extreme storms by hardening critical lines. Nat. Energy 9, 526–535 (2024).

    Article 

    Google Scholar
     

  • Gonçalves, A. C. R., Costoya, X., Nieto, R. & Liberato, M. L. R. Extreme weather events on energy systems: a comprehensive review on impacts, mitigation, and adaptation measures. Sustain. Energy Res. 11, 4 (2024).

    Article 

    Google Scholar
     

  • Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 

    Google Scholar
     

  • Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).

    Article 

    Google Scholar
     

  • Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 11, 1655–1674 (2019).

    Article 

    Google Scholar
     

  • Hobeichi, S., Abramowitz, G., Evans, J. & Beck, H. E. Linear optimal runoff aggregate (LORA): a global gridded synthesis runoff product. Hydrol. Earth Syst. Sci. 23, 851–870 (2019).

    Article 

    Google Scholar
     

  • NRG-IND-REN Share of energy from renewable sources. Eurostat (2021).

  • Hirth, L., Mühlenpfordt, J. & Bulkeley, M. The ENTSO-E transparency platform—a review of Europe’s most ambitious electricity data platform. Appl. Energy 225, 1054–1067 (2018).

    Article 

    Google Scholar
     

  • Bloomfield, H. C., Brayshaw, D. J. & Charlton-Perez, A. J. Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorol. Appl. 27, e1858 (2020).

    Article 

    Google Scholar
     

  • Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7, 130 (2020).

    Article 

    Google Scholar
     

  • Human activities, energy, wind farms. European Marine Observation and Data Network (EMODnet) (2014).

  • European Commission Joint Research Centre (JRC). JRC Hydro-power database. European Commission, Joint Research Centre (JRC) (2019).

  • van Der Wiel, K. et al. The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett. 14, 094010 (2019).

    Article 

    Google Scholar
     

  • Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric multi-index model. Adv. Water Res. 57, 12–18 (2013).

    Article 

    Google Scholar
     

  • van der Most, L., van der Wiel, K., Benders, R. M. J., Gerbens-Leenes, W. & Bintanja, R. 1,600 years of modelled energy production and demand for European Countries (Norway, France, Italy, Spain, and Sweden). Zenodo (2024).

  • Gagan Narayan Sharma
    Gagan Narayan Sharmahttps://greenearth.news
    Gagan Narayan Sharma Bio: Gagan Sharma is a passionate environmental blogger based in Bhopal, India. Driven by a deep concern for the planet's health, Gagan strives to raise awareness about critical ecological issues through his engaging news portal, "Green Earth." With a blend of scientific knowledge, personal anecdotes, and captivating storytelling, Gagan Narayan's portal empowers readers to make informed choices and advocate for environmental protection. Gagan Narayan's Mission: • Unveiling Environmental Challenges: Gagan sheds light on pressing environmental issues like climate change, pollution, deforestation, and biodiversity loss. He delves into the science behind these issues, making complex topics relatable to a broad audience. • Inspiring Action: Gagan believes that knowledge is power. His blog goes beyond just raising awareness; it inspires readers to take action. He provides practical tips on sustainable living, advocates for eco-friendly policies, and highlights the work of environmental heroes. • Cultivating a Community: Gagan fosters a vibrant online community through his blog. He encourages discussions, welcomes guest posts from environmental experts, and actively engages with his readers. This collaborative spirit strengthens the collective voice for environmental change. Beyond the Blog: Gagan 's commitment to environmentalism extends beyond the digital realm. He actively participates in environmental campaigns, volunteers for clean-up drives, and supports organizations working towards a greener future. Gagan is a firm believer in leading by example, and his dedication inspires those around him. Gagan Sharma: A Beacon of Environmental Hope Gagan Sharma's passion, knowledge, and dedication make him a powerful voice for environmental protection. Through his portal, https://GreenEarth.news, he empowers individuals to become responsible stewards of the planet, inspiring a collective movement towards a more sustainable future.
    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments