Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5, 794–802 (2020).
Staffell, I. & Pfenninger, S. The increasing impact of weather on electricity supply and demand. Energy 145, 65–78 (2018).
van Der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R. & Screen, J. A. Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environ. Res. Lett. 15, 034050 (2020).
Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
Climate Bulletins (Copernicus Climate Change Service, 2021); https://climate.copernicus.eu/climate-bulletins
Morison, R. & Shiryaevskaya, A. U.K. power surges to record 400 pounds as wind fails to blow. Bloomberg (13 September 2021).
Fernández, L. Hydroelectricity generation Spain 2010–2022. Statista (2023).
Ingram, E. Hydroelectric generation in Italy decreased 37.7% in 2022. Hydro Review (26 January 2023).
European State of the Climate 2022: Unprecedented Extreme Heat and Widespread Drought Mark European Climate in 2022 (Copernicus Climate Change Service, 2023); https://climate.copernicus.eu/copernicus-european-state-climate-2022-unprecedented-extreme-heat-and-widespread-drought-mark
Gualtieri, T. Drought forces one of Spain’s largest hydro plants to halt. Bloomberg (7 November 2022).
Hydropower Data Explorer (IEA, 2021); https://www.iea.org/data-and-statistics/data-tools/hydropower-data-explorer
Van Vliet, M. T. H., Sheffield, J., Wiberg, D. & Wood, E. F. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environ. Res. Lett. 11, 124021 (2016).
Brás, T. A., Simoes, S. G., Amorim, F. & Fortes, P. How much extreme weather events have affected European power generation in the past three decades? Renew. Sustain. Energy Rev. 183, 113494 (2023).
Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L. & Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5, 150–159 (2020).
van der Wiel, K. et al. Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall. Renew. Sustain. Energy Rev. 111, 261–275 (2019).
Otero, N., Martius, O., Allen, S., Bloomfield, H. & Schaefli, B. Characterizing renewable energy compound events across Europe using a logistic regression-based approach. Meteorol. Appl. 29, e2089 (2022).
Jurasz, J., Mikulik, J., Dabek, P. B., Guezgouz, M. & Kaźmierczak, B. Complementarity and ‘resource droughts’ of solar and wind energy in poland: an ERA5-based analysis. Energies 14, 1118 (2021).
Kay, G. et al. Variability in North Sea wind energy and the potential for prolonged winter wind drought. Atmos. Sci. Lett. 24, e1158 (2023).
Otero, N., Martius, O., Allen, S., Bloomfield, H. & Schaefli, B. A copula-based assessment of renewable energy droughts across Europe. Renew. Energy 201, 667–677 (2022).
Jahns, C., Osinski, P. & Weber, C. A statistical approach to modeling the variability between years in renewable infeed on energy system level. Energy 263, 125610 (2023).
Raynaud, D., Hingray, B., François, B. & Creutin, J. D. Energy droughts from variable renewable energy sources in European climates. Renew. Energy 125, 578–589 (2018).
Bloomfield, H. C. et al. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew. Energy 164, 1062–1075 (2020).
Craig, M. T. et al. Overcoming the disconnect between energy system and climate modeling. Joule 6, 1405–1417 (2022).
Grochowicz, A., van Greevenbroek, K., Benth, F. E. & Zeyringer, M. Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Econ. 118, 106496 (2023).
Perera, A. T. D. et al. Challenges resulting from urban density and climate change for the EU energy transition. Nat. Energy 8, 397–412 (2023).
Tsanis, I. & Tapoglou, E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change. Theor. Appl. Climatol. 135, 323–330 (2019).
Ely, C. R., Brayshaw, D. J., Methven, J., Cox, J. & Pearce, O. Implications of the North Atlantic Oscillation for a UK–Norway renewable power system. Energy Policy 62, 1420–1427 (2013).
Rakovec, O. et al. The 2018–2020 multi-year drought sets a new benchmark in Europe. Earthʼs Future 10, e2021EF002394 (2022).
van der Wiel, K., Batelaan, T. J. & Wanders, N. Large increases of multi-year droughts in north-western Europe in a warmer climate. Clim. Dyn. 60, 1781–1800 (2023).
van der Most, L. et al. Extreme events in the European renewable power system: validation of a modeling framework to estimate renewable electricity production and demand from meteorological data. Renew. Sustain. Energy Rev. 170, 112987 (2022).
Muntjewerf, L., Bintanja, R., Reerink, T. & van der Wiel, K. The KNMI large ensemble time slice (KNMI-LENTIS). Geosci. Model Dev. 16, 4581–4597 (2023).
Ohlendorf, N. & Schill, W. P. Frequency and duration of low-wind-power events in Germany. Environ. Res. Lett. 15, 084045 (2020).
Bloomfield, H. C., Suitters, C. C. & Drew, D. R. Meteorological drivers of European power system stress. J. Renewable Energy 2020, 5481010 (2020).
Kautz, L. A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dyn. 3, 305–336 (2022).
Montanari, A. et al. Why the 2022 Po River drought is the worst in the past two centuries. Sci. Adv. 9, eadg8304 (2023).
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).
Fischer, E. M., Seneviratne, S. I., Lüthi, D. & Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34, L06707 (2007).
van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).
van Vliet, M. T. H. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40, 156–170 (2016).
Stürmer, J. et al. Increasing the resilience of the Texas power grid against extreme storms by hardening critical lines. Nat. Energy 9, 526–535 (2024).
Gonçalves, A. C. R., Costoya, X., Nieto, R. & Liberato, M. L. R. Extreme weather events on energy systems: a comprehensive review on impacts, mitigation, and adaptation measures. Sustain. Energy Res. 11, 4 (2024).
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).
Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 11, 1655–1674 (2019).
Hobeichi, S., Abramowitz, G., Evans, J. & Beck, H. E. Linear optimal runoff aggregate (LORA): a global gridded synthesis runoff product. Hydrol. Earth Syst. Sci. 23, 851–870 (2019).
NRG-IND-REN Share of energy from renewable sources. Eurostat (2021).
Hirth, L., Mühlenpfordt, J. & Bulkeley, M. The ENTSO-E transparency platform—a review of Europe’s most ambitious electricity data platform. Appl. Energy 225, 1054–1067 (2018).
Bloomfield, H. C., Brayshaw, D. J. & Charlton-Perez, A. J. Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorol. Appl. 27, e1858 (2020).
Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7, 130 (2020).
Human activities, energy, wind farms. European Marine Observation and Data Network (EMODnet) (2014).
European Commission Joint Research Centre (JRC). JRC Hydro-power database. European Commission, Joint Research Centre (JRC) (2019).
van Der Wiel, K. et al. The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett. 14, 094010 (2019).
Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric multi-index model. Adv. Water Res. 57, 12–18 (2013).
van der Most, L., van der Wiel, K., Benders, R. M. J., Gerbens-Leenes, W. & Bintanja, R. 1,600 years of modelled energy production and demand for European Countries (Norway, France, Italy, Spain, and Sweden). Zenodo (2024).